Incremental Learning of Locally Orthogonal Subspaces for Set-based Object Recognition

نویسندگان

  • Tae-Kyun Kim
  • Josef Kittler
  • Roberto Cipolla
چکیده

Orthogonal subspaces are effective models to represent object image sets (generally any high-dimensional vector sets). Canonical correlation analysis of the orthogonal subspaces provides a good solution to discriminate objects with sets of images. In such a recognition task involving image sets, an efficient learning over a large volume of image sets, which may be increasing over time, is important. In this paper, an incremental learning method of orthogonal subspaces is proposed by updating the principal components of the class correlation and total correlation matrices separately, yielding the same solution as the batch computation with far lower computational cost. A novel concept of local orthogonality is further proposed to cope with non-linear manifolds of data vectors and find a more optimal solution of orthogonal subspaces for a certain neighbouring object image sets. In the experiments using 700 face image sets, the locally orthogonal subspaces outperformed the orthogonal subspaces as well as relevant state-of-the-art methods in accuracy. Note that the locally orthogonal subspaces are also amenable to incremental updating due to their linear property.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

Robust visual tracking with structured sparse representation appearance model

In this paper, we present a structured sparse representation appearance model for tracking an object in a video system. The mechanism behind our method is to model the appearance of an object as a sparse linear combination of structured union of subspaces in a basis library, which consists of a learned Eigen template set and a partitioned occlusion template set. We address this structured spars...

متن کامل

Object Recognition and Incremental Learning Algorithms for a Web-Based Telerobotic System

− This paper describes a web-based telerobotic system with two basic capabilities: object recognition and incremental or continual learning. Within this context, the present paper investigates the feasibility of applying several distance-based classifiers to remote object recognition tasks. On the other hand, incremental learning enables the system to maintain a representative set of past train...

متن کامل

Incremental GRLVQ: Learning relevant features for 3D object recognition

We present a new variant of Generalized Learning Vector Quantization (GRLVQ) in a computer vision scenario. A version with incrementally added prototypes is used for the non-trivial case of high-dimensional object recognition. Training is based upon a generic set of standard visual features, the learned input weights are used for iterative feature pruning. Thus, prototypes and input space are a...

متن کامل

The Kernel Orthogonal Mutual Subspace Method and Its Application to 3D Object Recognition

This paper proposes the kernel orthogonal mutual subspace method (KOMSM) for 3D object recognition. KOMSM is a kernel-based method for classifying sets of patterns such as video frames or multi-view images. It classifies objects based on the canonical angles between the nonlinear subspaces, which are generated from the image patterns of each object class by kernel PCA. This methodology has been...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006